Curve construction based on four αβ-Bernstein-like basis functions
نویسندگان
چکیده
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Weighted dual functions for Bernstein basis satisfying boundary constraints
In this paper, we consider the issue of dual functions for the Bernstein basis which satisfy boundary conditions. The Jacobi weight function with the usual inner product in the Hilbert space are used. Some examples of the transformation matrices are given. Some figures for the weighted dual functions of the Bernstein basis with respect to the Jacobi weight function satisfying boundary condition...
متن کاملLp Bernstein estimates and approximation by spherical basis functions
The purpose of this paper is to establish Lp error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates Lp Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the Lp norm of the functi...
متن کاملL Bernstein Estimates and Approximation by Spherical Basis Functions
The purpose of this paper is to establish Lp error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates Lp Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the Lp norm of the functi...
متن کاملJacobi–bernstein Basis Transformation
Abstract — In this paper we derive the matrix of transformation of the Jacobi polynomial basis form into the Bernstein polynomial basis of the same degree n and vice versa. This enables us to combine the superior least-squares performance of the Jacobi polynomials with the geometrical insight of the Bernstein form. Application to the inversion of the Bézier curves is given. 2000 Mathematics Sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.06.014